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We propose a modular electromagnetic modeling procedure for large finite electromagnetic band-gap �EBG�
structures, called linear embedding via Green’s operators. It is a diakoptic method based on the Huygens–
Schelkunoff principle involving equivalent boundary current sources that electromagnetically characterize the
enclosed domain of arbitrary shapes, as if it were a multiport system. In a cascade of embedding steps, separate
reusable domains are combined to form larger domains. Device design often involves tuning local medium
properties in a compact designated domain with a large environment. Through an additional embedding step
the equivalent sources describing the environment can be transferred to the boundary of the designated domain,
rendering subsequent design steps very fast. This two-stage optimization process is applied in the design of an
EBG power splitter.
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I. INTRODUCTION

Let us consider an electromagnetic wave that is incident
on an aggregate of objects with strong electromagnetic con-
trasts. If the effective length scale on which the contrast var-
ies, and the wavelength of the field are commensurate, geo-
metric resonance effects may give rise to intricate scattered
fields. If the electromagnetic contrast is also periodic, elec-
tromagnetic band gaps may occur. Three-dimensional �3D�
configurations with one or more band gaps are referred to as
electromagnetic band-gap �1,2��EBG� configurations, or,
when specifically intended for optical or microwave frequen-
cies, as photonic band-gap and microwave band-gap con-
figurations, respectively. The 3D EBGs have first been pro-
posed in pursuit of the inhibition of spontaneous emission
�1�, and, in case of carefully prepared disorder in the period-
icity, to demonstrate Anderson localization of photons �3�.

Following the original interest in these physical phenom-
ena, it was the prospect of producing devices in which elec-
tromagnetic fields can be confined in a controlled fashion �4�
in one, two and three dimensions via corresponding defects
in periodic structures that has sparked extensive EBG re-
search activities over the past decades. For instance, it has
been demonstrated, both numerically �5� and experimentally
�6� that when an EBG structure is terminated in certain ways,
the resulting half-space structure admits surface waves. Lo-
cal defects inside an EBG structure may give rise to 3D field
confinement �7�, and right-angle bends joining linear defect
waveguides can be tuned such that nearly total transmission
is achieved �8�. Many of the EBG structures that have been
considered consist of holes or posts in dielectric bulk mate-
rial or in slabs, providing band-gap field confinement in two
dimensions only. The so-called Fan structure �9� and the

woodpile �10–12� were the first true 3D EBG structures.
The geometric resonance effects not only lead to intricate

fields, but also increase the sensitivity of the field to pertur-
bations in the frequency and the scattering geometry. As a
consequence, it is possible to design devices, e.g., filters,
with a high quality factor, and hence, by definition, a narrow
bandwidth. However, the high sensitivity of EBG structures
to spatiotemporal changes also implies that it will be hard to
achieve a fault-tolerant design, as margins for errors are
small. Hence, for analysis and design purposes, it is crucial
that in addition to being fast and flexible, the numerical code
used for producing the simulations is reliable and accurate.

The so-called plane-wave method has been used exten-
sively for the electromagnetic analysis of fully periodic EBG
structures �13,14�, and, via the construction of supercells, to
emulate the effects of periodic defects �7�. A variety of
transfer-matrix methods �15–17� have been developed. These
methods are more flexible than the plane-wave method, in
that periodicity is no longer required in one direction. How-
ever, transfer matrix methods are not inherently stable, in
contrast to multiple-scattering-based methods �18,19� for a
finite number of scatterers �nonperiodic contrasts� or for pe-
riodic contrasts. Dedicated multiple-scattering methods have
been developed for spherical scatterers �such as varieties of
the vector Korringa-Kohn-Rostocker method �20�, for paral-
lel cylindrical scatterers �21–23�, and for woodpiles �24�.

In the methods mentioned above, the field calculations are
performed either directly for the entire configuration, or for
single EBG layers that are subsequently stacked, e.g., via the
Redheffer star product for scattering matrices �25�, to com-
pute the electromagnetic response of a composite-layer struc-
ture. For structures with a predominantly planar stratifica-
tion, the latter approach has two advantages, viz., the
intermediate single-layer problems are computationally
much smaller than the overall problem, and the resulting
single-layer scattering matrices can be reused as building*Electronic address: A.M.v.d.Water@tue.nl
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blocks for a variety of composite-layer structures. The intro-
duction of an extra field perturbation calculation stage in the
scattering-method based Source Model Method provides an
efficient way of studying the effects of local cavity defects in
a stack of EBG layers �26�. Elements of the method that we
propose below are akin to ideas sketched above, in that our
method is a multiple-stage method, based on a scattering
formalism.

The field scattered in an inhomogeneous region with elec-
tromagnetic contrast may be considered as being generated
by secondary contrast sources inside, or on the boundary of
that region. Invoking Huygens’ principle �27�, we may con-
sider the scattered field outside a contour �or surface in the
3D, case� surrounding the inhomogeneous region, as having
been generated by an equivalent source distribution on that
contour �surface�. Mathematically, this is referred to as an
equivalence principle. The equivalent source distribution is
not unique. Love’s equivalence principle �28� is based on
both electric and magnetic equivalent current sources,
whereas Schelkunoff’s equivalence principle �29� involves
either electric or magnetic equivalent current sources. From
the perspective of an observer outside the contour surround-
ing the inhomogeneous region, that region may be fully char-
acterized electromagnetically through the scattering response
via the equivalent source distributions that effectively consti-
tute a multiport system �albeit a continuous one�. The de-
composition of large systems into interacting multiport sub-
systems is called diakoptics �30�. Having been used in early
days for problems in structural mechanics and electric net-
works, later diakoptics has been combined with the Method
of Moments for the analysis of wire antennas �31,32�, and for
planar microwave circuits �33�. For these problems the defi-
nition of the ports comes naturally. Diakoptics has been ap-
plied to field problems in quantum mechanics and electro-
magnetics through the introduction of a nonlocal admittance
operator that provides the boundary conditions for a varia-
tional field problem in a confined region of space �34–36�.
This method is referred to by the generic term embedding.
More recently, diakoptics has been used for supplying
boundary conditions for the finite-difference time-domain
technique, resulting in the so-called Green’s function method
�37,38�.

We have developed a specific variety of the Huygens-
Schelkunoff principle based diakoptics for 2D configura-
tions, referred to as linear embedding via Green’s operators
�LEGO�. Embedding has been proposed in inverse scattering
�39,40� an alternative to de-embedding, which, like deconvo-
lution, is not stable per se. In its most elementary form, we
use embedding to describe multiple scattering between adja-
cent objects, by considering one of the objects as the envi-
ronment of the other and vice versa. Instead of likewise de-
composing a large field problem into many subproblems that
still have to be solved, as one would ordinarily do in diakop-
tics, we typically start by constructing the linear Green’s op-
erators that characterize environments consisting of elemen-
tary building blocks, and subsequently employ a cascade of
embedding steps to build a library of reusable linear Green’s
operators that fully characterize various types of complex
composite environments. We have reported on some aspects
of embedding at conferences �41–43�. Below, we present a

full account of embedding, starting with the electromagnetic
characterization of an object �or objects� located within a
bounded domain by means of a scattering operator. This scat-
tering operator provides a mapping from the equivalent
boundary current source distributions, associated with an ar-
bitrary incident field, to equivalent boundary current source
distributions associated with the corresponding scattered
field. Next, we derive the embedding procedure for a con-
figuration consisting of two disjoint scattering domains,
yielding the scattering operator for the combined structure.
Subsequently, we discuss the composition of the scattering
operator, in case the boundaries of the two original scattering
domains have a contour in common. We demonstrate that
once the electromagnetic scattering response of a composite
structure has been determined, it may be expedient to per-
form an additional embedding step to transfer the equivalent
sources on the outer boundary of the composite structure to
equivalent sources on the boundary of a designated domain
of interest, which in the case of device design is usually
small. Thus, our embedding procedure allows for the separa-
tion of the numerical simulations into two parts, viz., inci-
dental time-consuming calculations for the characterization
of the large environment, and many fast numerical simula-
tions in the small designated domain, while accounting for
the presence of the environment through an environment op-
erator. As an illustration of this two-stage procedure, we con-
sider the optimization of a cavity at the junction of three
EBG waveguides in a power splitter.

II. THE SCATTERING OPERATOR

As a first step towards embedding, we consider a simply
connected bounded 2D domain, containing one or more ob-
jects with electromagnetic contrast in a homogeneous back-
ground. We want to determine the scattered fields for all
possible excitations, on or outside the boundary of the do-
main. Thus, we capture the complete electromagnetic char-
acterization of the scattering domain in a scattering operator.
Inside the scattering domain, any field incident on it may be
considered as excited by an equivalent current source distri-
bution on the boundary of the domain. In turn, the scattering
operator produces an equivalent current distribution that rep-
resents the corresponding scattered field in the exterior do-
main. The scattering operator relates the incident to the scat-
tered equivalent electric current sources.

To illustrate the scattering operator, we consider the scat-
tering problem depicted in Fig. 1, involving a scattering do-
main D1 bounded by the contour C1. The scattering object
and observation contour may be chosen arbitrarily, as long as
the scatterers are enclosed by the contour. For simplicity, we
focus on the transversely magnetic polarized cases with Ez
and Jz being the only nonvanishing components of the elec-
tric field and �equivalent� electric current, respectively.
Henceforth, we drop the subscript z. The domain exterior to

D1, denoted by D̄1, contains the source distribution that pro-
duces an arbitrary incident field Ein. Incident plane waves are
included implicitly, as being generated by sources at a large
distance. Throughout, we reserve the symbol Ein for the in-
cident field in the background medium.
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To compose the scattering operator of D1, the interior and
exterior field problems are separated by application of the
Schelkunoff equivalence principle along C1 for both domains
�29,44�. In this approach, a virtual electrically impenetrable
screen is placed at C1, on which equivalent current distribu-
tions, J1

in=Jin��� and J1
sc=Jsc��� for � on C1, are defined that,

respectively, reproduce the original interior incident and ex-
terior scattered fields. Mathematically, these current distribu-
tions are convolved with the electromagnetic responses of
unit-amplitude line sources along C1 for the domain in ques-
tion. Due to the impenetrable screen, the incident field from

D̄1 induces a surface current on C1 that may be regarded as a
secondary source, and radiates a field that cancels Ein in D1.
The opposite of that current represents the equivalent current
distribution, J1

in, indicated by the dotted line just inside C1,
that would reproduce an identical incident field in D1 �but

not in D̄1�. Therefore, J1
in is obtained from the electric-field

integral equation �EFIE�

− s��
C1

G��,���Jin����d�� = Ein���, for � � C1, �1�

where G represents the 2D Green’s function defined by

G��,��� =
1

2�
K0� s�� − ���

c
� , �2�

and K0 denotes the modified Bessel function of the second
kind of order zero. The kernel of the integral in Eq. �1� yields
the electric field at an observation point � due to a unit-
amplitude electric line source at ��, in a homogeneous me-
dium, with permeability � and permittivity �. Further, c
= ����1/2 and s is taken as s= j� where Re����0 is the
radial frequency. To keep the analysis below lucid, we define
the propagation operator P1

P1���J1=̂ − s��
C1

G��,���J����d��, for � � R2. �3�

This operator produces the electric field at � due to an elec-
tric current distribution J1. The subscript of the propagator
refers to the contour, C1, on which the current distribution J1
is defined. We add an extra subscript to P1 for points of
observation on C1, i.e., P11J1=P1���J1 for ��C1. Accord-
ingly, the EFIE in Eq. �1� is written as

P11J1
in = E1

in. �4�

Because this equation describes a linear problem, we may
formally introduce the inverse propagator of Eq. �3� such
that

J1
in = P11

−1E1
in, �5�

provided that the corresponding homogeneous equation has
only the trivial solution. Although the equivalent current dis-
tribution J1

sc that reproduces the exterior scattered field may
be obtained directly from the scattered field for a specific
incident field via a single EFIE, we prefer using the scatter-
ing operator S11 instead to encompass the scattered field for
all possible excitations. In accordance with Eq. �3�, the scat-
tering operator is defined through

J1
sc = S11J1

in = �
C1

S��,���Jin����d��. �6�

The equivalent current distribution J1
sc is depicted by the dot-

ted line just outside D1 in Fig. 1, since it reproduces the
exterior scattered field. To determine the kernel of the scat-
tering operator, S�� ,���, the scattering behavior of the object
inside a homogeneous environment is required for indepen-
dent source filaments J1

in at sufficiently many sample points
��C1. A source at point �� generates a field that impinges
upon the scattering objects in D1, giving rise to a scattered

field Esc. We regard Esc in D̄1 as if it were generated by
secondary contrast sources in a homogeneous background
medium. In D1 ,Esc induces a surface current distribution on
the virtual electric screen at C1, radiating a field that would

cancel Esc in D̄1. Hence, the opposite of that current is the
desired equivalent current distribution J1

sc as defined in Eq.
�6�. The kernel of the scattering operator then follows from a
similar EFIE as in Eq. �5�,

S��,��� = P11
−1E11

sc , �7�

where the field E11
sc =Esc�� ,��� in the kernel of the inverse

propagator is the scattered field at � on C1 for a source at ��
on C1. The field E11

sc can be determined using conventional
methods, e.g., a domain integral equation with second order
accuracy as described in �45�, or a boundary integral equa-
tion �BIE� for dielectric objects �46�. To solve the scattered
field numerically for all source positions on C1, a “marching
on in source position� scheme �47� may be utilized as a
predictor-corrector method to reduce computation times con-
siderably. The total field Et��� is expressed in terms of both
equivalent current distributions along C1 according to,

FIG. 1. Scattering by an object in a homogeneous environment
using the scattering operator.
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	P1���J1
in + �

C1

Esc��,���Jin����d��, � � D1,

Ein��� + P1���J1
sc, � � D̄1.

�8�

III. EMBEDDING

A second scattering object, contained inside a domain D2
and bounded by contour C2, is introduced close to D1 such
that the multiple scattering effects between both domains can
not be neglected. The embedding procedure accounts for this
interaction. It provides the multiple scattering in terms of the
scattering operators of the individual domains that have been
characterized at an earlier stage. To accomplish this, the do-
main D2 is considered as part of the environment of D1 and
vice versa.

In principle, the equivalent currents that generate the scat-
tered fields exterior to the respective domains are still valid.
However, each scatterer produces an additional incident field
for the other. We will describe the resulting multiple scatter-
ing in terms of a feedback loop involving a modified, “com-
plete” current Jcp. By replacing Jin with Jcp, the complete
field in domain D1 follows immediately from Eq. �8�. The
combined exterior scattered fields are obtained by applica-
tion of the scattering operators of both domains via Eq. �6�.
To convert the incident currents Jin, associated with the
single scattering domains in absence of the others, into the
desired complete current distributions Jcp, four J operators
are introduced,


J1
cp

J2
cp� = 
J11 J12

J21 J22
�
J1

in

J2
in� . �9�

Again, from left to right, the subscripts in the operator J,
respectively, denote the contours on which the observation
and source distributions are located. For example, J12 yields
an equivalent current distribution on C1 for the complete field
in D1 due to the field incident on D2 �in the absence of
scattering objects in D1�. Once the four J operators have
been determined, the entire field problem has effectively
been solved.

In order to find expressions for the J operators, we intro-
duce two current-transfer operators. In Fig. 2, the action of
the transfer operator T21 is depicted. It produces an equiva-
lent current distribution on C2 for the field in D2 for each
possible current distribution on C1. The construction of the
transfer operator T21 involves two steps. First, the current on
C1 generates a field that is propagated to C2, via the propa-
gation operator P21. Second, the equivalent current distribu-
tion that would produce the corresponding field in D2 is ob-
tained by applying the EFIE via the inverse propagator P22

−1

on C2, in a similar fashion as in Eq. �5�. This results in

T21 = P22
−1P21,

T12 = P11
−1P12, �10�

where a minus sign is concealed in the inverse propagators,
as the opposite of the induced currents on each contour re-

produce the corresponding interior field in accordance with
the equivalence principle. Note that P22

−1=P11
−1 for contours

with identical shape, and that P21 follows from P12 by ex-
changing source and observation contour �reciprocity�. Also,
when both contours coincide, the transfer operators reduce to
identity operators.

In Fig. 3, we have sketched the part of the multiple scat-
tering process that corresponds to an incident field on C1,
only. In this case, D2 is considered as the environment of D1.
As illustrated in Fig. 3, J11 is obtained from J21 through
scattering in domain D2, with scattering operator S22, and a
subsequent transfer of the resulting equivalent current distri-
butions to the first contour via T12. However, this does not
represent the complete field incident on D1 as the current
distribution J1

in also produces a direct contribution in D1,
which is accounted for by an additional unit-amplitude iden-
tity operator I11. The resulting expression for J11 thus be-
comes

J11 = I11 + T12S22J21. �11�

Similarly, J21 is obtained from J11 through scattering via S11,
and a transfer of the corresponding equivalent currents to C2
via T21. Hence, we obtain

J21 = T21S11J11. �12�

For the incident current J2
in ,D1 is considered as the environ-

ment of D2. Using duality, the J22 and J12 operators are

FIG. 2. The current-transfer operator T21 transfers current dis-

tributions that radiate into D̄1 from the first onto the second contour
and subsequently produce the same field in D2.

FIG. 3. The J11 and J21 operators for an incident current J1
in that

include the direct incident field and the occurring multiple scatter-
ing represented by the loop.
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readily obtained by swapping the indices 1 and 2, thereby
exchanging source and observation contour. Combining Eqs.
�11� and �12�, together with their dual counterparts, yields
the following matrix equation:


J11 J12

J21 J22
� = 
 0 T12S22

T21S11 0
�
J11 J12

J21 J22
� + 
I11 0

0 I22
� ,

�13�

where the last matrix on the right-hand side accounts for the
contribution of the incident field in the absence of scatterers
in D1 and D2. Next, let us define the reflection operators R11
and R22. For D1,

R11 = T12S22T21, �14�

produces equivalent currents on C1 that represent the scat-
tered field from D2 in D1 due to currents on C1. Note that R11
constitutes the Green’s operator that characterizes the envi-
ronment of D1. Likewise, we have

R22 = T21S11T12. �15�

Now, we may express the solution of Eq. �13� in terms of
scattering and reflection operators according to


J11 J12

J21 J22
� = 
�I11 − R11S11�−1 0

0 �I22 − R22S22�−1�
� 
 I11 T12S22

T21S11 I22
� . �16�

The two terms R11S11 and R22S22 both describe the closed
loop as depicted in Fig. 3. The inverse of �I−RS� accounts
for the multiple scattering and thus represents the actual em-
bedding of the pertaining domain. The last matrix on the
right-hand side contains the incident field contribution of Eq.
�13�. In particular, T12S22 provides the contribution of the
incident field on D1 in the absence of scatterers in D1,
whereas T21S11 provides the contribution of the incident field
on D2 in the absence of scatterers in D2. One might think
that both embedding operators �I11−R11S11� and �I22

−R22S22� have to be evaluated. This is not the case, since the
complete incident field in D1, provided by J11 and J12, is
obtained via the embedding operator, �I11−R11S11�, in Eq.
�16�. Subsequently, the complete incident field in D2, pro-
vided by J22 and J21, follows from J11 and J12 upon applying
Eq. �13�. This may be illustrated through the relation,

T21S11�I11 − R11S11� = �I22 − R22S22�T21S11, �17�

which follows from

T21S11R11 = R22S22T21, �18�

and is a direct consequence of the definitions for the reflec-
tion operators in Eqs. �14� and �15�.

IV. COMPOSITION OF SCATTERING OPERATORS

With the embedding concept presented above, the interac-
tion between two scattering objects is accounted for. Al-
though the complete interior and exterior total field can be

constructed with the obtained J operators, the procedure still
relies on the availability of the incident currents and scatter-
ing operators of the individual subdomains. In order to com-
pose a new scattering operator of the combined domain,
which may in turn interact with other domains, the embed-
ding procedure will be extended below.

The combined domain D1�D2, is denoted by D3 with
outer contour C3. The incident field Ein in D3 is represented
by the current distribution J3

in, which follows from Eq. �5� for
C3. Beware that since we use Schelkunoff’s equivalence prin-
ciple, J3

in cannot be constructed via a mere superposition of
the currents J1

in and J2
in used in the previous section. This

becomes clear by comparing Eq. �5� for all three contours.
The part of J3

in located on C1 thus also contributes to the
incident field in D2, even when both domains are not con-
nected. We would like to reproduce this contribution to the
incident field in D2 through a corresponding equivalent cur-
rent distribution on C2. To achieve this, the part of J3

in located
on C1 should also be transferred to C2. Hence, the transfer
operator T21 must be added to the expression for J21 in Eq.
�13�, according to

�J21 J22 � = T21S11�J11 J12 � + �T21 I22 � , �19�

while J11 and J12 in Eq. �16� become

�J11 J12 � = �I11 − R11S11�−1 � �I11 + R11 T12�I22 + S22� � .

�20�

The dual counterparts of the Eqs. �19� and �20� can be found
by swapping indices 1 and 2, but are omitted here for brevity.

When C1 and C2 have no common contour, CC=C1�C2
=ø, and hence C3=C1�C2, the four J operators immediately
represent the J13 and J23 operators valid for the incident cur-
rent source distribution J3

in. Similarly, the scattering operators
of both subdomains form the S31 and S32 operators. The
desired scattering operator S33 of D3 then follows directly
from the scattering operators of the individual domains,

S33 = S31J13 + S32J23. �21�

In the presence of a common contour CC, application of the
EFIE to C1�C2 indicates that currents induced by an incident
field Ein cancel out on CC. Hence, the contribution from in-
cident currents JC

in on CC may be omitted, which has already
been done implicitly in the composition of the Ji3, with i
=1, 2, operators, as the outer contour C3 excludes common
contour parts.

Likewise, we would like to let the scattered field outside
D3 be described by equivalent current distributions on the
outer contour C3 only. However, there remain equivalent cur-

rents on CC that contribute to the scattered field in D̄3 and
should still be accounted for. To achieve this, the scattering
matrices are decomposed into two parts, viz., S3i and SCi
with equivalent current distributions on C3 and CC, respec-
tively. Because the SCi radiate into a homogeneous domain
D3, they can be transferred to the outer contour C3 via a
transfer operator T3C, in conformity with Eq. �10� �cf. Fig. 4.
Hence,
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S33 = �S31 + T3CSC1�J13 + �S32 + T3CSC2�J23 �22�

represents the scattering operator of the combined domain in
the presence of a common contour.

Although both domains are combined into a single scat-
tering object, it remains possible to describe the complete
interior fields of a subdomain of interest, say Di, in terms of
the incident current J3

in only, i.e.,

Ji
cp = Ji3J3

in, �23�

in conformity with Eq. �9�. The operator Ji3 transforms J3
in on

the outer contour directly into a Ji
cp on the contour of subdo-

main Di. The resulting total field Et��� is given by

	Pi���Ji
cp + �

Ci

Esc��,���Jcp����d��, � � Di ,

Ein��� + P3���J3
sc, � � D̄3.

� �24�

In a subsequent embedding step Ji3 can be updated. For
instance, the embedding of the previously combined domain
D3 with another domain, that changes the outer contour into,
say C4, yields a J34 operator, and

Ji4 = Ji3J34 �25�

replaces Ji3 for the new composite structure. The freedom to
choose for which of the subdomains Di the complete interior
field is preserved �and updated� or not, is an additional ap-
pealing feature of the embedding procedure.

To assess the corresponding overall storage demand, we
consider a large domain DL with NL unknowns �source po-
sitions� on its outer contour CL. DL contains NT previously
combined subdomains Di with an average number of un-
knowns Ni on Ci. The associated required amount of storage
then becomes NL

2 for the SLL operator, and NTNiNL for the
JiL operators. Although this states the size of both operators
explicitly, the size of the combined structure varies substan-
tially with respect to the shape of the outer contour.

As we prefer to relate the memory requirement to the size
of the obtained structure, we will provide an upper and lower
limit for NL in terms of the number of previously combined
domains NT and the corresponding average number of un-
knowns Ni on Di. In the worst case, when none of the sub-
domains have contours in common, i.e., NL=NTNi, and the
size of the operators, SLL and JiL, are proportional to

�NTNi�2. In the best case, when all subdomains are closely
packed together, we have NL=Ni


NT, and the size of the
operators reduces to NTNi

2 for SLL and NT
3/2Ni

2 for JiL. Of
course, the size of JiL reduces further if only the complete
interior field of specific subdomains is retained.

V. OPTIMIZATION THROUGH EMBEDDING

The theory presented above can be used repeatedly to
obtain operators that describe the complete interior and ex-
terior field behavior for large finite structures. By repeated
embedding of such a large structure with a sequence of pos-
sible inhomogeneous local domains, local structure varia-
tions can be studied for optimization purposes.

Because the environment operators encompass all pos-
sible excitations, the computation time and the required stor-
age demand will grow considerably for large structures, es-
pecially when the interior field of all subdomains is
constantly retained. However, both computation time and
storage demands can be reduced significantly if the embed-
ding of subsequent domains is restricted to a designated do-
main, DD, of interest. Let us elaborate on this via an example
illustrated in Fig. 5. Here, a large scattering domain DL ob-
tained by repeated application of the embedding procedure is
shown. The dotted lines indicate the common contours of the
subdomains Di;L that have been removed at preceding em-
bedding stages. Let us select a designated domain DD which
is relatively small compared to DL, and may even be multi-
ply connected. Further, let us stipulate that the outer contour
CD of DD encloses both the source that excites the incident
field, and the domains DE that are yet to be embedded. This
restriction allows us to convert the large scattering operator
SLL into a reduced scattering operator SDD on CD, where SDD
reproduces the scattered field of DL in DD due to current
distributions on CD. Thus we would avoid the time-
consuming direct embedding of DE with DL, which has a
large outer contour CL by considering the interaction between
CD and CL across CD instead, thus significantly reducing com-
putational costs. The composition of DL through repeated
embedding is the most expensive step, while the subsequent
embedding with a designated domain is very cheap, thus
facilitating local structure optimization.

To obtain SDD, we invoke the transfer operators, TDL and
TLD,

FIG. 4. Both domains with a common contour part, CC, where

equivalent sources that contribute to the scattered field in D̄3 radiate
into an empty interior D3.

FIG. 5. The designated domain DD for subsequent excitation
variation and frequent embedding of a domain DE with a large
scattering domain DL.
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SDD = TDLSLLTLD, �26�

which transfers the interaction from the large outer contour
CL to the significantly smaller contour CD. If ND denotes the
number of unknowns on CD, the complexity of further em-
bedding in DD reduces by a factor �ND/NL�2. Because DD

covers an interior embedding approach with respect to
DE ,SDD corresponds to the reflection operator for the exte-
rior configuration in Eq. �14�. The embedding procedure pre-
sented in the previous sections remains valid throughout. Af-

ter the embedding of DE with D̄D, the complete currents, JE
cp

for DE and JD
cp for D̄D, include the interaction between DE

and DL. They are readily obtained through Eq. �23�, from the
incident currents J

D̄

in
and JE

in due to a source distribution in

DD�D̄E that generates an incident field Ein. Introducing C3
=CD�CE, we find that the complete field, Et���, in DD, �cf.
Eq. �24��,

	PE���JE
cp + �

CE

Esc��,���Jcp����d��, � � DE,

Ein��� + P3���J3
sc, � � DD \ DE.

�
�27�

Note that only SDD is required for the embedding and the
reconstruction of the complete field in DD. Nevertheless, the
exterior field in DB and the interior field of DL can be ob-
tained with relatively low additional costs once the ideal
structure is obtained. Because incident currents JD

in are only
present on CD, the �large� interior field operator JiL, and scat-
tering operator SLL of DL can be reduced by a factor NL/ND,
through application of the transfer operator, TLD, according
to

JiD = JiLTLD,

SLD = SLLTLD, �28�

in which JiD and SLD produce the respective complete inte-

rior and exterior fields in DL and D̄D�D̄L due to an incident
current JD

in. Note that, when DD is completely enclosed by
DL, i.e., CD is a subcontour of CL, the transfer operators TLD
and TDL reduce to identity operators. The complete incident
current Ji

cp for each subdomain Di;L �e.g., the sixteen cells
within CL in Fig. 5� and the equivalent scattered current JL

sc

are constructed from the complete current JD
cp,

Ji
cp = JiDJD

cp,

JL
sc = SLDJD

cp. �29�

The corresponding total field Et��� in D̄D is subsequently
obtained from a relation similar to Eq. �27�,

Pi���Ji
cp + �

Ci;L

Esc��,���Jcp����d��, � � Di;L,

PD���JD
cp + PL���JL

sc, � � DB. �30�

If a subdomain is frequently reused, which is very common
for EBG structures Ei

sc and Pi��� can be reused for each
subdomain, which accelerates the final field computations
considerably.

VI. NUMERICAL VALIDATION

As a validation of the embedding approach, let us con-
sider two hexagonal unit cells of a 2D triangular EBG with
lattice constant a, consisting of circular air cylinders inside a
dielectric background with relative permittivity �r=11.4. To
operate within the full band gap for both polarizations, of an
EBG structure consisting of such cylinders, the frequency is
normalized such that fa /c=0.48, and the radius of the cylin-
ders is set to r /a=0.475. For reference, we employ a BIE
with 1250 equivalent electric and magnetic surface currents
on each cylinder boundary. The corresponding total electric
field strength in Fig. 6�a� where a line source, indicated by a
small dot, generates the incident field. To ensure an honest
comparison with the theory presented above, we have em-
ployed analytical solutions for the fields scattered by a single
cylinder. This avoids errors originating from the construction
of the initial scattering operator of the individual computa-
tional domains. The current distributions on the domain con-
tours used in the embedding approach are discretized with 40
points per wavelength. In Fig. 6�b� we have shown the elec-
tric field calculated using the embedding approach. We have
highlighted the hexagonal contours C1 and C2. In the scatter-
ing operator of the combined structure, the common contour
has been removed. Both plots are scaled in dB to capture
possible deviations at different amplitude scales. Nearly no
visual difference can be observed between both field plots.
Note that the field across the domain contours remains con-
tinuous. In this example, a direct advantage of the embed-
ding approach shows up, in that the computational domain
contour may be of arbitrary shape, which provides maximum
flexibility. For instance, for EBGs with cylinders closely
packed on a triangular lattice, the cylinders can not be con-
tained in periodic rectangular computational domains, and
hence hexagonal contour shapes would be more suitable.

VII. OPTIMIZATION OF EBG STRUCTURES

Now, let us apply the embedding approach by considering
a power splitter for a single-mode linear-defect waveguide
inside a large finite EBG structure. The actual structure is
superimposed on the field plots in Figs. 7 and 8. A triangular
arrangement of dielectric circular cylinders ��r=11.56� in the
air is employed here as a basis. The corresponding periodic
EBG structure exhibits a large TM gap about fa /c=0.407 for
r /a=0.175. Within the rectangular supporting structure of 17
by 17 cylinders, three linear defect waveguides are created
by removing rows of cylinders. The waveguides are joined at
a Y junction through a cavity consisting of a cylinder of
arbitrary radius and permittivity surrounded by regular EBG
cylinders. In our example, the cavity is tuned to attain high
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transmission across the junction, as suggested in �48� for
bends.

Due to the relatively small cylinder radius, as compared to
the ones in Fig. 6, the shape of the computational domain is
not restricted to a hexagonal one. To test the influence of the
chosen computational domain, we employ the rhombic shape
indicated in Fig. 7 with 18 unknowns on each edge. The
EBG structure itself is symmetric with respect to the xz plane
�cf. Fig. 1�. However, the computational domains are not
symmetric, and hence, all asymmetries which occur in the
results for a symmetric excitation can be attributed to the
embedding approach.

In contrast with popular simulation packages, by which
the optimum operating frequency can be determined for a
given structure, we are able to optimize the structure for a
given operating frequency. In particular, we apply embed-
ding to analyze the effect of different cavity configurations at
the Y junction of the power splitter.

The first stage towards structure optimization is the com-
position of the scattering operator, SLL, of the large domain

DL through repeated embedding of reusable scattering do-
mains, starting with a single scattering cylinder. The final
outer contour CL where SLL is defined, is highlighted in Fig.
7. The dotted lines in DL indicate common contour parts that
have been removed at preceding embedding stages in the
composition of DL. Because DL is constructed from single
unit cells containing circulair cylinders, the initial scattering
operator may still be computed analytically. Although this
first stage is very time-consuming, in the order of hours, it is
performed only once.

In the initial step of the optimization stage, we assign a
relatively small designated domain DD, which contains the

FIG. 6. The total electric field on a logarithmic 60-dB scale of
the scattering from two cylinders with the BIE method �a� versus
the embedding approach �b�. White regions indicate a high field
amplitude. The dots indicate the source location.

FIG. 7. The total electric field of the hexapole cavity mode with
high transmission at �r=28 and r /a=0.3767. The contour CL of the
large domain DL has been highlighted, where the dotted lines indi-
cate removed common contour parts.

FIG. 8. The total electric field of Fig. 7 on a logarithmic 90-dB
scale. White regions indicate a high field amplitude. The contour CD

of the designated domain DD has been highlighted, and the location
of the radiating electric line source has been marked by a cross.
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source and structure variations, as well as the domains where
the field values are to be optimized. In the current configu-
ration, this includes the cells containing the defect cylinder
inside the cavity, the source in the left waveguide branch,
and cells in each of the other two branches where the trans-
mitted power is monitored. The corresponding contour CD is
highlighted in Fig. 8. On CD, the reduced scattering operator,
SDD, which describes the scattering response of the large
environment in the small domain DD, is obtained from SLL
through Eq. �26�.

The subsequent optimization stage involves the repeated
embedding for a variable r /a and �r of the defect cylinder
with the large domain DL. Here, the unit cell that contains
the defect cylinder inside the cavity, is taken as the embed-
ding domain DE. Because each embedding step involves the
scattering operator SDD, instead of SLL, such an embedding
step becomes quite fast, in the order of seconds.

In Fig. 9, the resonant modes of the cavity are shown as a
function of r /a and �r of the defect cylinder. These modes
represent local maxima and minima in the power transmitted
through the cavity, respectively, indicated by solid and
dashed lines. An electric line source that produces the inci-
dent field is positioned in the left waveguide branch in the
horizontal symmetry plane of the power splitter. Hence, only
even cavity modes are excited with respect to the symmetry
plane. The first monopole is not shown, because it occurs for
a �nearly� unloaded cavity. The application of scattering op-
erators allows us to vary the source position at each cavity
configuration in Fig. 9 as well, without additional costs.
Since the optimum remained fairly stable throughout, we
have chosen to fix the source position.

A measure of the transmission in terms of the pointing
vector in the upper waveguide branch at �r=28 is presented
in Fig. 10. Aside from the first monopole, the local maxima
and minima transmission regions appear to be very narrow.
The corresponding electric field of the resonant states inside
the cavity are shown in Fig. 11. Each maximum, at a dipole
or hexapole mode, appears to have a counterpart nearby that
produces a minimum. This is caused by the asymmetry of the
cavity in the vertical plane �the yz-plane in Fig. 1 with re-

spect to the center of the cavity� due to the attached wave-
guide branches. This phenomenon would not be observed if
the cavity was placed in an otherwise perfect crystal, which
is a common assumption in the analysis of these structures.
As a consequence, the vertical asymmetric modes reoccur at
nearly the same cavity configuration.

The total electric field in the entire structure for the hexa-
pole mode with a local maximum is depicted in Fig. 7. De-
spite the vertical asymmetry of the chosen computational
domains and building sequence, the obtained field distribu-
tion remains symmetric. To capture possible deviations at
different amplitudes, the same field distribution is shown in
Fig. 8 on a logarithmic 90-dB scale. The symmetry of the
field at lower amplitudes deeper within the supporting EBG
remains intact. The right-hand side of the structure shows
some minor anomalies, but given the amplitude scale and the
modest discretization, the results are very accurate.

VIII. CONCLUSIONS

We have proposed an embedding technique based on in-
tegral equations and Schelkunoff’s equivalence principle that
accounts for the multiple scattering between objects in terms
of scattering and reflection operators for equivalent current
distributions on computational contours. These contours may
be of arbitrary shape, which provides maximum flexibility in
assembling separate regions into composite structures, for
which a new scattering operator can be determined. Results
show good agreement with a boundary integral equation
method for multiple dielectric objects.

Although embedding is about the exchange of electro-
magnetic information across the boundaries of separate do-
mains, one may choose to retain the complete interior field
information in selected subdomains of interest. Also, the em-
bedding technique is well suited to construct libraries of re-
usable building blocks, and lends itself for parallel process-
ing as partial substructures can be computed independently.

Once the electromagnetic scattering operator of a large
composite structure has been determined through repeated
embedding, starting from a single �reusable� building block,

FIG. 9. The resonant cavity modes as a function of �r and the
radius of the defect cylinder. Solid and dashed lines, respectively,
denote local maxima and minima in the transmitted power. �:
monopole, + : dipole, �: quadrupole, and *: hexapole.

FIG. 10. The pointing vector normal to the cross section of the
upper waveguide branch as a function of the defect cylinder radius
r /a for �r=28 excited by an electric line source of 1A. The markers
indicate the cavity modes of Fig. 9.
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it is expedient in performing an additional embedding step to
transfer the equivalent boundary sources on the outer bound-
ary of the composite structure to the boundary of a desig-
nated domain of interest that encloses the actual sources and
the subdomains in which medium variations are considered.
In the case of device design this is usually small. Within this
designated domain, subsequent embedding with the large
composite domain is very cheap, thus facilitating fast local
structure optimization. This two-stage process has been dem-
onstrated through the optimization of the transmission char-
acteristics of an EBG power splitter in its dependence on
structure variations at the junction of the splitter.

Although the presented theory is applied for finite 2D
structures, it may be modified for periodic structures. We are
currently implementing LEGO for three-dimensional con-
figurations. Furthermore, fast multipole methods can be ap-
plied in the embedding of large structures to reduce compu-
tation time.
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